【摘要】在多元非参数模型中带宽和阶的选择对局部多项式估计量的表现十分重要。本文基于交叉验证准则提出一个自适应贝叶斯带宽选择方法。在给定的误差密度函数下,该方法可推导出对应的似然函数,并构造带宽参数的后验密度函数。随后,通过带宽的后验期望可同时获得阶和带宽的估计。数值模拟的结果表明,该方法不仅比大拇指准则方法精确,且比交叉验证方法耗时更少。与此同时,与Nadaraya-Watson估计相比,所提带宽选择方法对多元非参数模型的适应性要更好。最后,本文通过一组实际数据说明有限样本下所提贝叶斯带宽选择的表现很好。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中外医疗》 2015-07-06
《阅江学刊》 2015-07-02
《重庆电子工程职业学院学报》 2015-07-02
《重庆高教研究》 2015-06-26
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点